Enclosure (1)

Reusable First Stage Evolutionary Shuttle Upgrade

THEE WESTERNOS

Reusable First Stage

Evolutionary Shuttle Upgrade

Presented at Space Shuttle Development Conference NASA Ames Research Center July 30, 1999

Tom Hamilton RFS Project Manager

> Tom Healy RLV Chief Engineer

Boeing

What Is The Reusable First Stage ?

A first stage reusable booster with a Liquid Propulsion System that replaces the Shuttle Solid Rocket Motors

Shuttle with SRB's

Shuttle with RFS's

LOCKHEED MARTIN

Key Characteristics of the RFS / Shuttle

- Completely reusable
- Autonomous fly back and landing
- Liquid oxygen and kerosene propellants
- Mission completion with one engine out
- Eliminates RTLS or TAL for intact abort
- No new technology breakthroughs required

Improved Safety is a Key Focus of RFS

Mission Success & Safe Return

- Full mission objectives with single Booster Main Engine (BME) out
- Eliminates RTLS or TAL for single SSME failure reduces risk for intact aborts
- RFS enables abort capability during 1st stage flight due to BME throttling (new capability)
- Eliminates SSME throttle bucket
- Lower catastrophic failure ratios
- Booster system verification before flight

Environmental & Handling Hazards

- Eliminates hazardous SRB handling, post-retrieval clean-up and reduces manutacturing process sensitivity
- Eliminates sea & rail operations and attendant hazards
- Reduces rocket plume environmental impact

Improved Reliability is Inherent in Improved

- operation during all flight phases All subsystems have a minimum of fail-safe system
- Avionics are fail op / fail op/ fail safe
- Demonstrate robust BME margins nominal ops at 75% rated power
- **IVHM & Informed Maintenance data base builds with** continued reuse
- Pre-delivery tests of engines / components
- Booster system verification before flight
- Verification of health status engines prior to launch commit
- In-flight health monitoring acts on off nominal performance

Except for Fly-Back Flight Operations Similar to SRB/Shuttle,

Stand-alone horizontal processing using Intelligent Maintenance Management

Short turn around time line - 24 shifts to process all RFS elements

Modular component R&R with off-line repairs

Fully coupled to CLCS and Logistics Management Systems at KSC

All land-based operations with no ocean recovery

Five Different Flight Regimes The RFS / Shuttle Flies in

BOEING

LOCKHEED MARTIN

Increased Performance Potential RFS / Shuttle Offers

The Boeing RFS Configuration -A Low Risk, High Performance Design

- 16 1/2 ft core diameter
- 152 ft length / 82 ft span
- 204K lb dry weight, 1.4M lb GLOW
- LOX/kerosene propellants
- Delta wing, 35° LE sweep
- Wing optimized for subsonic cruise Deployable fixed canards (subsonic trim)
- Single tail, all-moveable
- Four nacelle mounted FBE's (two candidates) Lower losses / Improved maintenance
- Four BME's (four candidates)
- All Aluminum structure baseline
- Integral tanks derived from Delta IV
- B-1 nose gear / 757 main gears
- Integrated VHM / Informed maintenance

High Performance Configuration The Lockheed-Martin RFS is Also a Low Risk,

- 17 ft core diameter
- 152 ft length / 75 ft span
- 201K lb dry weight, 1.5M LB GLOW
- LOX/RP-1 propellants
- Delta wing, 50° LE sweep optimized for flying qualities
- Forward canards to reduce trim drag
- Single tail, all-moveable
- Four BME's (four candidates)
- Mixed Aluminum & Composite structure
- Integrated VHM / Informed Maintenance
- Orbiter landing gear components

LOCKHEED MARTIN

Booster Main Engine Candidates

Aerojet AJ26-58 Modified from Existing NK-33

Pratt & Whitney RD-180S

Modified From Existing RD-180

Aerojet AJ-800 Derived from NK-33

Rocketdyne RS-76

Oxygen rich, staged combustion cycle provides clean, dry rocket engines for rapid turn around

Candidate BME Packaging

All BME's have competitive performance

All candidate BME's can be packaged in the RFS configurationswith minor differences

RD-180 AJ-26-58 Similar

RS-76

AJ-800

Fly Back Engine Candidates

General Electric F118 Derivative

20K lbf Thrust Class

Used on B-2 & U-2 aircraft

Pratt & Whitney F100-PW-229A Derivative

20 K lbf Thrust Class

Planned for F15 & F-16 aircraft

Significant Benefits to Shuttle RFS Offers

Eliminates RTLS or TAL for single SSME failure

Full mission objectives with single Booster Main ≡nyine (BME) out

Booster system verification before flight

Ilminates hazardous SRB nandling and reduces

Mission Effectiveness

increases bunch flexibility

Enables standard missions

Reduce flight-to-flight analysis/reconfiguration

Orbiter standard consumable loads

System Performance

TO PASSES PRIVIDENTS TO All planned orbits 45K to ISS (limited by Orbiter down-we

System Cost

- . Reduces annual operations by \$400M
- (@78 Flights per year)
- SRB hardware deletion

In Summary

Sonsepis reasible 319

ANTESTATION STORY บอกอสิเร

នាក់ទសានាខែ ខ្សានាក់ខ្សាន אסלי בוליתפליט ל

